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1 Introduction

In the midst of the COVID-19 pandemic, health care providers and policymakers are facing a sharp rise in

the demand for medical supplies in order to treat infected patients and combat the spread of the disease.

In particular, COVID-19’s potentially life threatening respiratory symptoms have led to a strong growth in

demand for mechanical ventilators, ultimately increasing the risk of shortages, both in the United States

and abroad [1, 2, 3, 4].

Still, local shortages of ventilators do not necessarily imply global shortages. In the United States, the

total supply of ventilators exceeds the projected overall demand from COVID-19 patients. In addition,

several manufacturers are ramping up their production of ventilators. However, the pandemic does not

affect each state in the same way at the same time, leading to potential shortages at the local level (e.g.,

within a state, within a hospital). Such shortages can be alleviated by pooling the ventilator supply: states

with their peak of infections in the past or weeks ahead can help other states facing an immediate shortage

at marginal costs to their constituents. Such inter-state transfers are already occurring. For instance, the

states of Oregon, Washington, and California have recently sent ventilators to New York state [5, 6, 7]. We

propose an optimization formulation to study the benefits and tradeoffs of ventilator pooling, in the hope

that policymakers will find it helpful as they grapple with the scarcity of life-saving devices.

COVID-19 is an acute respiratory disease caused by SARS-CoV-2, also known as coronavirus. Biolog-

ically, this novel virus is a single-stranded RNA and likely spread to humans from a zoonotic source [8].

This virus is reported to spread from person to person via respiratory droplet nuclei [9] and persists on

surfaces [10]. SARS-CoV-2 is known to bind to the ACE2 receptor on type II pneumocytes. Currently, the

incubation time is reported to be between 3 to12 days with a 20 day median duration of viral shedding,

i.e., the release of the virus after a successful reproduction in the infected host cell [11, 12]. Confirmed

cases undergo isolation and infection control, typically accompanied by respiratory support. Currently, the

decision tree is driven by oxygen saturation levels at SpO2 < 93%, as recommended by the World Health

Organization [13]. Following the standard Acute Respiratory Distress Syndrome (ARDS) protocol, COVID-

19 patients are initially put in the prone position and put in a drug induced paralysis via a neuromuscular
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blockade to prevent ventilator-associated lung injury [14] and then put on a ventilator [15], which delivers

high concentrations of oxygen into the lungs while removing carbon dioxide. Initial studies suggest that early

ventilator intubation keeps COVID-19 patients’ heart, liver, and kidneys from failing due to hypoxia [16].

This protocol has led to ventilator shortages, as well as a shortage of the sedative used for the prerequisite

nueromuscular blockade [17].

In response to this shortage, hospitals are utilizing split-ventilation by rigging the tubing on ventilators to

accommodate more than one patient [18]. In addition, some hospitals observe that protocol-driven ventilator

use for COVID-19 patients could cause more harm than good [19], since some COVID-19 patients have

well-preserved lung gas volume and could benefit from the lowest possible positive end-expiratory pressure.

Therefore, they select a Continuous Positive Airway Pressure, a BiLevel Positive Airway Pressure machine,

or even nasal cannulas. These alternatives do not require sedation, reducing the risk of complications.

2 Problem statement

The ventilator-pooling problem is formulated as a multi-period resource allocation problem. Let us consider

a planning horizon of D days, indexed by d = 1, · · · , D. We define a set of S states, indexed by s = 1, · · · , S.

For each day d and each state s, the demand for ventilators is denoted by vs,d (obtained, for example, from

an epidemiological forecasting model). The goal is to determine where to allocate the federal stockpile of

ventilators and how many ventilators to transfer between states, so that the supply of ventilators in each

state is sufficient to meet the forecasted demand (or at least to minimize the local shortages).

The key objective, of course, is to maximize health outcomes for COVID-19 patients. We operationalize

this objective by minimizing the costs of ventilator shortages. If we assume that the demand forecast is

perfectly accurate and that states can perfectly allocate ventilators to the patients that need them the

most, then minimizing ventilator shortages is a reasonable objective. To cope with demand uncertainty and

with within-state inefficiencies, however, we also introduce a buffer, thus minimizing the cost of projected

shortages (based on the demand forecast) and the cost of worst-case shortages (based on the pessimistic

demand estimate with the additional buffer). We describe next the model formulation in greater detail.

3 Formulation

3.1 Basic formulation

Data. We consider the allocation problem over S states and D days. We are given the following data:

• vs,d is the demand for ventilators in state s on day d (1 ≤ s ≤ S, 1 ≤ d ≤ D).
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• bs is the base supply of ventilators starting in each state s.

• nd is the surge supply of ventilators distributed by the federal government on day d.

• ds,s′ is the distance between state s and state s′.

• τs,s′ is the lead time between state s and state s′.

Three comments are noteworthy. First, the surge supply nd corresponds to the number of ventilators

that are actually distributed by the federal government on day d—the question of how to manage a federal

stockpile falls beyond the scope of this model. Second, the consideration of distances aims to encourage

transfers between proximal states, to the extent possible. Third, we calibrate the distances such that ds,s > 0

for each state s. This ensures that the model will not propose any transfer from any state into itself.

Decisions. We define integer decision variables as follows:

• xs,d ∈ Z+ is the supply of ventilators in state s on day d (1 ≤ s ≤ S, 0 ≤ d ≤ D).

• ys,s′,d ∈ Z+ is the number of ventilators sent from state s to state s′ on day d.

• ws,d ∈ Z+ is the shortage of ventilators in state s on day d relative to the demand vs,d.

• ∆s,d ∈ Z+ is the shortage of ventilators in state s on day d relative to the demand with a buffer.

• zs,d ∈ Z+ is the additional supply state s receives from the federal government on day d.

Parameters. We define the following parameters, which control the tradeoffs of the optimization problem:

• fmax ∈ [0, 1] is the maximum fraction of its base supply that each state is willing to share.

• α ∈ [0,∞) is the percentage of projected demand that states would like to plan for (with buffer supply).

• λ ∈ [0,∞) is the LASSO regularization parameter on the transfers. Default Value = 0.1.

• tmin ∈ Z+ is the minimum number of days a ventilator is in use. Default Value = 10.

• Vmax ∈ Z+ is the maximum number of ventilators a state can ship per day. Default Value = 3000.

• ρ ∈ [0, 1] is a relative cost parameter. Each unit of supply that falls short of the projected demand

is assigned a cost of 1. Each unit of supply that exceeds the demand but does not exceed the state’s

desired buffer supply is assigned a cost of ρ. Default Value = 0.25.
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Constraints. We now present the constraints for the optimization problem:

• Initial supply for each state s:

xs,0 = bs, ∀s = 1, · · · , S.

• Maximum amount of supply that each state s is willing to share on each day d:

xs,d ≥ (1− fmax)bs, ∀s = 1, · · · , S, d = 1, · · · , D.

• The surge supply must be distributed among states on each day d:

S∑
s=1

zs,d ≤ nd, ∀d = 1, · · · , D.

• The shortage variable is defined as the difference between demand and supply, if positive, for each state

s and day d:

ws,d ≥ vs,d − xs,d, ∀s = 1, · · · , S, d = 1, · · · , D.

• The buffer shortage variable is defined such that the total (actual plus buffer) shortage corresponds to

the difference between the buffered demand and the supply, if positive, for each state s and day d:

ws,d + ∆s,d ≥ (1 + α)vs,d − xs,d, ∀s = 1, · · · , S, d = 1, · · · , D.

• Conservation of flow for each state s and day d. It ensures that today’s supply is equal to yesterday’s

supply plus what is received today from the government and the other states, minus what is sent to

the other states (the term τs′,s reflects the shipments’ lead times):

xs,d = xs,d−1 + zs,d +

S∑
s′=1

ys′,s,d−τs′,s −
S∑

s′=1

ys,s′,d, ∀s = 1, · · · , S, d = 1, · · · , D.

• No shipment from states facing shortages, for each state s and day d. It imposes that a state will not

send ventilators to another state if it currently faces a shortage. To write these constratints, we define

auxiliary binary variables as,d indicating if there is a shortage in state s on day d.

ws,d + ∆s,d ≤ vs,d(1 + α)as,d

S∑
s′=1

ys,s′,d ≤ Vmax(1− as,d)
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• Minimum days a ventilator is in use, for each state s and day d. It imposes that any incoming ventilator,

either from another state or from the federal government, cannot be shipped out for at least tmin days.

d−1∑
d′=max(1,d−tmin)

(
zs,d′ +

S∑
s′=1

ys′,s,d′

)
≤ xs,d, ∀s = 1, · · · , S, d = 1, · · · , D.

Objective. As described previously, the problem is formulated as a bi-objective problem, minimizing total

shortage costs and the amount of ventilator transfers. Ventilator shortages are assigned a weight of 1 for

shortages relative to the projected demand and a weight ρ ≤ 1 for shortages relative to the buffered demand.

We formalize the bi-objective problem by means of a LASSO penalty on transfers.

min

S∑
s=1

D∑
d=1

(ws,d + ρ∆s,d) + λ

[
S∑
s=1

S∑
s′=1

D∑
d=1

ds,s′ys,s′,d +

S∑
s=1

D∑
d=1

zs,d

]
.

3.2 Planned extensions

Inter-state fairness. It is essential to ensure that the allocating mechanism does not disproportionately

penalizes one state by favoring another state. We propose two fairness considerations.

• We penalize the maximum per-state shortage in the objective function, thus creating a tradeoff between

individual state welfare and nationwide welfare.

min

S∑
s=1

D∑
d=1

(ws,d + ρ∆s,d) + λ

S∑
s=1

S∑
s′=1

D∑
d=1

ds,s′ys,s′,d + µ max
s=1,··· ,S

{
D∑
d=1

(ws,d + ρ∆s,d)

}
.

• We guarantee that no state is left much worse off than it would be on its own. To implement this

constraint, we compute Ws as the shortage cost of state s in the absence of inter-state ventilator

transfers—obtained by solving the model with transfers from the federal government but without

inter-state transfers (by fixing the variables ys,s′,d to 0). We then impose the following constraint,

which ensures that, with inter-state transfers, each state s bears a cost of at most Ws plus β%.

D∑
d=1

ws,d ≤Ws(1 + β), ∀s = 1, · · · , S.

State participation. States are more willing to participate in a ventilator sharing program if it is guaran-

teed their interests can be protected. The additional constraint below ensures that, whenever a state shares

a ventilator with another state, it guarantees that it will receive a corresponding ventilator when it will need
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one itself. This is written as follows, for each state s and day d:

ws,d ≤ max

(
0,Ws −

S∑
s′=1

d−1∑
d′=1

ys,s′,d′

)
.

Uncertainty management. There is significant uncertainty on the exact number of ventilators needed

in every state (obtained from epidemiological models) and the amount of ventilators available to the federal

government (obtained from publicly available sources and news articles). We shall address this uncertainty

in order to ensure the robustness of the proposed allocation to variations from the “best guess” values.

4 Parameter choices and data sources

4.1 Data Sources

The key data for the ventilator sharing problem relate to the supply and demand of ventilators, and we now

describe our methodology in collecting this data.

Demand. Forecasting demand for ventilators has been the focus of significant recent efforts. We single

out two particular models:

• our own epidemiological forecasting model (available on covidanalytics.io), which publishes daily

state-by-state forecasts for cases, hospitalizations and ventilator usage.

• a forecasting model built by researchers at the Insitute for Health Metrics and Evaluation (IHME) at

the University of Washington.

The two forecasting models agree on fundamental characteristics of the COVID-19 pandemic, but the

first model tends to be a bit more conservative, and demand estimates can differ on a state-by-state basis. As

a result, it is of interest to study the ventilator sharing problem under both demand forecasts, and we allow

the user to select the demand data source of their choice to understand the impact on the recommended

allocation. To the best of our ability, we are updating the demand forecasts daily.

Supply. As is often the case with medical equipment, ventilator supply in the United States is mostly

decentralized, and it can be difficult to estimate how many ventilators are available in each state as well

as at the federal level. For the base supply bs in each state, we use inventory levels from a 2010 American

Medical Association report [?], adjusted for population growth under the assumption that the number of

ventilators per capita has remained constant in each state.
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Of course, ventilators are a critical piece of medical equipment that can be used to treat both COVID-19

patients and non-COVID-19 patients. We currently assume that 50% of ventilator supply across the board

is unavailable due to non-COVID-19 usage.

In addition, our model takes into account the daily availability nd of ventilators at the federal level that

can be distributed to the states based on need. Estimating the number of ventilators that can be available

from publicly-available sources is both difficult due to limited data and politically fraught. We propose one

estimate, described below; yet, given the underlying uncertainty, we allow the user to adjust the level of

federal government availability in our interface, in order to explore the model’s sensitivity to this input—the

interplay between interstate transfers and federal intervention underpins critical decision-making.

The federal government maintains a strategic stockpile of medical equipment in warehouses around the

country. The Society for Critical Medicine estimates that this stockpile contains at least 12,700 ventilators

in its COVID-19 ICU Resource Availability Report [?]. Some recent news reports suggest a lower estimate

of 10,000 based on some defects in the stockpiled equipment [?], while others suggest an estimate of 16600

based on older model repairs [?]. Based on these reference points, we estimate roughly 13500 available

ventilators and assume that they can be deployed evenly over the course of the next month. In other words,

we allow 450 ventilators to be deployed each day for 30 days (starting on day 4 to allow for lead times).

This gradual release reflects potential operational constraints and strategic considerations of controlling the

release of inventory in case of unexpected outbreaks.

Distances and lead times. We compute the interstate distance ds,s′ as the Euclidean distance between

the centers of states s and s′, and we let the lead time parameter τs,s′ equal 3 days for every pair of states.

Our choice of a conservative uniform lead time for shipments is motivated by simplicity concerns. This could

be improved, in future work, to better reflect efficiencies in the US shipping infrastructure.

4.2 Parameter calibration

User-selected parameters. Many of the parameters in our model reflect complex and important decisions

in the hands of policymakers today. As a result, we allow users to modify some parameters to understand

their interplay. To avoid overwhelming users, we restrict the set of user-modified parameters to the following:

• The fraction fmax of its base supply that each state is willing to share. We allow users to select fmax

from {5%, 10%, 15%, 20%}. We observe diminishing returns when increasing fmax past 20%.

• The percentage α of projected demand that states would like to plan for with buffer supply. We

allow users to select this parameter from {0%, 5%, 10%, 20%}. We note that this parameter can model

different operational considerations, including uncertainty in the demand forecast as well as robustness
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to inefficiency in ventilator allocation within each state.

• As mentioned before, we let users reduce the federal daily supply by 10%, 25%, or 50%, since this

amount is both difficult to estimate from public data and subject to many policy considerations.

Fixed parameters. We listed default values for other parameters in Section 3, but we now expand on the

default value choices. The most important fixed parameter is the LASSO regularization parameter λ, which

penalizes transfers based on distance. As λ tends to zero, transfers incur no cost other than rendering the

ventilators unavailable during shipment, while as λ tends to infinity, transfers become heavily discouraged,

starting with transfers between more distant states. We choose a value of λ = 0.1 in our current model,

which corresponds to a small penalty on transfers (enough to discourage large or superfluous transfers, but

not enough to materially impact the optimal allocation). A priority of our future efforts is to include the

Pareto curve for the two terms in our objective to explore the tradeoff between ventilator shortages and

inter-state ventilator transfers.

The other fixed parameters do not have a strong effect on the optimal solution (typically less than 1%

of the objective). We set Vmax to 3000, exceeding the forecasted shortage of any state, ρ to 0.25, and tmin

to 10 days. The latter value is also used as the average time on ventilation in the demand forecast. The

constraint that ventilators cannot be transferred too many times in a 10-day period is almost never binding,

as shipping a ventilator from state to state means it is unavailable for several days at a time while in transit.
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