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1 Introduction to the Model
�emodel underlying our predictions is DELPHI (Di�erential Equations Leads to Predictions of Hospitalizations
and Infections). DELPHI is a compartmental model that is based on the widely successful SEIR model, but with
many additions to account for realistic e�ects. In particular there are two important e�ects that we consider:

• Underdetection: In any pandemic, a lot of cases go undetected due to many factors (failure to record, un-
able to test, mistaken for other disease, etc). �is is an important factor that if not appropriately accounted
for, would underestimate the real reach and spread of the epidemic.

• Governmental Response: No epidemic exists in a world where it is allowed to spread completely freely.
As the epidemic spreads, governments start to respond by enacting policies designed to limit the spread of
the virus, and we explicitly design a framework to take such policies into account in the model.

�e model separates people into 11 possible states of being in the epidemic:

• Susceptible (S): �e general populace who have not been infected.

• Exposed (E): People who are currently infected, but are not contagious and within the incubation period.

• Infected (I): People who are currently infected and contagious.

• Undetected (AR) & (AD): People who are infected, and self-quarantined themselves at home due to the
e�ects of the disease, but was not con�rmed due to lack of testing. Here, we model it in a way that some
of these people recover (AR) and some of these die (AD).

• Detected, Hospitalized (DHR) & (DHD): People who are infected, con�rmed, and hospitalized. Again,
we model it in two separate states: some of these people recover (DHR) and some of these die (DHD).

• Detected, �arantine (DQR) & (DQD): People who are infected, con�rmed, and home-quarantined
rather than hospitalized. Similar as before, we have two states: (DQR) for those that recover, and (DQD)
for those that die.

• Recovered (R): People who have recovered from the disease (and assumed to be immune).

• Death (D): People who have perished from the disease.

�e separation of recovery and death states in the detection phase (including AR/AD, DQR/DQD, DHR/DHD) is
required so that recovery and deaths can be tuned separately.

�e interactions between the di�erent states are summarized in the picture below, where the arrows indicate
possible �ow between the states:
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Figure 1: Simpli�ed Flow Diagram of DELPHI (V2)

2 Detailed Model Formulation
In addition to main functional states, we also introduce helper states to help us calculate a few useful quan-
tities. �is includes Total Hospitalized (TH), Total Detected Deaths (DD) and Total Detected Cases (DT). �e
mathematical formulation of the model, along with these helper states, is as followed:

dS

dt
= −αγ(t)S(t)I(t)

dE

dt
= αγ(t)S(t)I(t)− riE(t)

dI

dt
= riE(t)− rdI(t)

dAR

dt
= rd(1− pdth(t))(1− pd)I(t)− rriAR(t)

dDHR

dt
= rd(1− pdth(t))pdphI(t)− rrhDHR(t)

dDQR

dt
= rd(1− pdth(t))pd(1− ph)I(t)− rriDQR(t)

dAD

dt
= rdpdth(t)(1− pd)I(t)− rdthAD(t)

dDHD

dt
= rdpdth(t)pdphI(t)− rdthDHD(t)

dDQD

dt
= rdpdth(t)pd(1− ph)I(t)− rdthDQD(t)

dTH

dt
= rdpdphI(t)

dDD

dt
= rdth(DHD(t) +DQD(t))

dDT

dt
= rdpdI(t)

dR

dt
= rri(AR(t) +DQR(t)) + rrhDHR(t)

dD

dt
= rdth(AD(t) +DQD(t) +DHD(t))
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We de�ne each of the parameters in the previous equations below; in red are the parameters that are being ��ed
against historical data for each country/province, and in black the parameters considered to be constant for each
country:

• α is the infection rate and is considered to be constant across all countries.

• γ(t) measures the government response and is de�ned as:

γ(t) =
2

π
arctan

(
−b(t− a)

20

)
+ 1 + j0 exp

(
− (t− tjump)2

2σ2

)
�e details for choosing this function is explained in the sub-section below.

• rd is the rate of detection. �is equals to log 2
Td

where Td is the median time to detection (assumed to be 2
days).

• ri is the rate of infection leaving incubation phase. �is equals to log 2
Ti

where Ti is the median time to leave
incubation (assumed to 5 days).

• rri is the rate of recovery not under hospitalization. �is equals to log 2
Tri

where Tri is the median time to
recovery not under hospitalization (assumed to be 10 days).

• rrh is the rate of recovery under hospitalization. �is equals to log 2
Trh

where Trh is the median time to
recovery under hospitalization (assumed to be 15 days).

• rdth is the rate of death. �is equals to log 2
Tdth

where Tdth is the time till death for dying patients.

• pdth(t)measures the mortality percentage over time. It is set to be a declining function due to the improved
ability to detect milder cases and increased standard of care for COVID-19 patients. �e functional form is
de�ned as:

pdth(t) = (pdth0 − pdth)

(
2

π
arctan

(
− t

20
· rddec

)
+ 1

)
+ pdth

Where pdth0 is the initial mortality percentage, pdth is the lower bound in mortality percentage assuming
perfect detection and perfect treatment, and rddec is the rate of decay of mortality percentage.

• pd is the percentage of infection cases detected. �is percentage is constant and is set to 0.2.

• ph is the percentage of detected cases hospitalized. �is percentage is also constant.

�erefore, in total, we �t 9 parameters on which the equations depend directly, as well as two other “internal”
parameters (called k1 and k2 in our implementation) used for the initial conditions, which brings the total to
6 parameters per province. Now let us explain how we model the Societal-Governmental response for all
countries in the world �rst, and then more speci�cally for the United States to take into account the possible
policies for re-opening states.

3 Modeling Societal-Governmental Response

�e rate of infection is never constant in an epidemic. As governments start responding to an epidemic, the rate of
infection would start decreasing due to the measures being put in place. We have decided to model the response
by multiplying an initial infection rate with an arctan curve (to model the initial three phases of governmental
intervention) along with an exponential jump correction to model the resurgence in cases in many places.
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Figure 2: Illustration with γ(t) = 2
π arctan(− 4(t−10)

20 ) + 1 + exp(− (x−25)2
8 ) , so b = 4, a = 10, tjump = 25,

σ = 2, and j0 = 1.

• Phase I: �is phase models the initial response when the government has just started to consider imple-
menting policies for the epidemic. Some portion of the populacewould have already changed their behavior
responding to the reports of an epidemic, but a large portion of the population continues to experience life
normally.

• Phase II: �is phase is characterized by the sharp decline in infection rate as policies to control the spread
go into full force (e.g. closing down part of the economy), and the society in whole experiences a shock
event.

• Phase III: �is phase models the inevitable �a�ening out of the response as the measures reach saturation.
�is is represented by the diminishing marginal returns (i.e. convexity) in the decline of infection rate.

• Phase IV: �is phase models the resurgence in the cases caused by li�ing the social distancing restrictions
(prematurely) and people returning to normal behavior. �is is represented by the discrete normal-like
jump in the infection rate centered around a certain date. �e normal-like jump is used as we assume that
once the resurgence reaches a certain level, strong restrictions would be reintroduced, and the infection
rate would decline again.

Using parameters a and b, we are able to control, respectively, when the measures start, and the strength of such
measures; we can therefore interpret a as the median day of action, and b as the median rate of action. �e
parameter j0 represents the magnitude of the jump, tjump the median day when the jump occurred, and σ the
rate of which the resurgence in the cases occurred. �is formulation allows us to model a wide variety of policies
that di�erent governments impose, and then later retract under the same framework, including social distancing,
stay-at-home policies, quarantines, among many others. �is model is currently used for all provinces in the
world to model government response.

4 Policy Predictions using DELPHI

4.1 Future Policy and Re-Opening Modeling

�e DELPHI model assumes that restrictions would be reintroduced in the magnitude consistent with how large
the resurgence is. However, in reality, we are unsure with what policy is going to be introduced by the various
authorities in di�erent areas, and thus it is extremely useful to understand what would be the potential impact
of various policies on the future infections.
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Policy γ(t)
No Measure 1.0

Restrict Mass Gatherings 1.0
Restrict Others Only 0.668

Restrict Mass Gatherings and Schools Only 0.479
Restrict Mass Gatherings and Others Only 0.794

Restrict Mass Gatherings, Schools, and Others 0.423
Lockdown 0.239

Table 1: Normalized γ(t) values of various policies

To do so, we would need to know the e�ect on γ(t) for eachmeasure that has been implemented, so that when the
measure is li�ed, we can reverse the e�ect. �e optimal solutionwould be trying to learn howmuch eachmeasure
impacted γ(t) per state, but since many states implemented multiple measures at the same time, it is impossible
to extract the e�ect of a single measure from the observed trend. Luckily, however, many states implemented
similar policies, so we can instead aim to estimate the average e�ect of each measure as implemented across
states. �en we can utilize these predicted values to correct our estimation of γ(tp) in the case of a change of
policy. We explain the methodology below.

4.1.1 Creation of the Regression Tree

We use policy data collected for each predicted area around the world1, each of those features being a time
dependent binary variable, and collated the policies into a MECE (Mutually Exclusive, Collectively Exhaustive)
combination corresponding to the 6 following variables:

• No Measure: if the state is not implementing any measure

• Restrict Mass Gatherings: if the state restricts mass gatherings only

• Mass Gatherings Authorized but Others Restricted: if the state authorizes mass gatherings but is
restricting other things (among schools, work, travel and non-essential services)

• Restrict Mass Gatherings and Schools: if the state is restricting Mass Gatherings and Schools only

• Authorize Schools but Restrict Mass Gatherings and Others: if the state is authorizing schools but
restricting at least Mass Gatherings (and maybe others among work, travel and non-essential services)

• Restrict Mass Gatherings and Schools and Others: if the state is restricting Mass Gatherings and
Schools and others among work, travel and non-essential services

�e training data consists in those binary variables, and the target corresponds to the “historical” values for γ(t)
predicted by DELPHI V2.0 (in previous document) since early March. We voluntarily chose not to include any
time lagged values of γ(t − k) as features because most of the feature importance was taken by these values,
instead of the policies themselves, while interpretability here is key (although it managed to achieve much higher
out of sample R2). �e resulting values of γ(t), normalized by the no-measure policy, are shown below:

1Data gathered by the Institute for Health Metrics and Evaluation, and the Oxford COVID-19 Government Policy Tracker
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4.1.2 Correction of Government Response estimation

From the tree in Figure 3, we have to �nd a way to correct the current predicted value of γ(t) once there is a
change in policy using the values predicted by the tree. One way to do that was to �rst compute a normalized
o�set (w.r.t the largest value of γ(t) predicted by the tree, i.e. the No Measure value) between di�erent pairs
of policies, i.e. the normalized di�erence between tree-predicted values of γ(t) if we move from one policy to
another. A few examples can be found in Table 1; notice that the o�set is positive if the new policy is more
lenient, and negative if it is more stringent: Having computed this table, now we can use this normalized o�set

Policy Change k′0
Lockdown→ No Measure 1− 0.239 = +0.761

Lockdown→ Restrict Mass Gatherings & Schools & Others 0.423− 0.239 = +0.184
Restrict Mass Gatherings and Schools Only→ Lockdown 0.239− 0.479 = −0.240

Table 2: Examples of normalized o�set computations to correct estimation of γ(t) ∀t ≥ tc

as follows to correct the government response, from time tc when there is a change of policy2:

∀t ≥ tc γ′(t) =
2

π
arctan

(
−b(t− a)

20

)
+ 1 + j0 exp

(
− (t− tjump)2

2σ2

)
+ k′0 ·min

{
2− γ(tc)

1− p0
,
γ(tc)

p0

}

Where p0 is the normalized tree-predicted value of the current policy, and γ is the government response in the
�rst stage (so without the correction term). For example, if we are currently in Lockdown and are moving to No
measure, then we’d have k′0 = 0.787, p0 = 0.329/1.544 = 0.213 and γ(tc) = 2

π arctan
(
− tc−ab

)
+ 1.

�e term ∆ := k′0 ·min

{
2−γ(tc)
1−p0 , γ(tc)p0

}
represents the combination of three intuitive assumptions:

• If there is No Measure, γ(tc) ≤ 2: Since we are using the original arctan curve to �t the change (∆)
for γ(t), immediately a�er the change at tc we should conform to the bounds of the original arctan curve,
which are [0, 2].

• Under the Lockdown policy, γ(tc) ≥ 0: Reasoning same as above.

• �e e�ect of each change in policy is additive and proportional to the o�set k′0 estimated by the
tree: �is assumption limits ∆ = βk′0 for some linear coe�cient β. We can then see that the maximum β

we can take while respecting the two assumptions above is β = min

{
2−γ(tc)
1−p0 , γ(tc)p0

}
, as required.

2In implementation, we takemax{γ(t), 0} to eliminate the negative cases.
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